Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery
نویسندگان
چکیده
Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents.
منابع مشابه
Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy
Effective delivery of nanomedicines to tumor tissues depends on both the tumor microenvironment and nanomedicine properties. Accordingly, tumor microenvironment modification or advanced design of nanomedicine was emerging to improve nanomedicine delivery to tumors. However, few studies have emphasized the necessity to optimize the tumor microenvironment and nanomedicine properties simultaneousl...
متن کاملRole of TGFβ in regulation of the tumor microenvironment and drug delivery (Review)
Deregulation of cell signaling homeostasis is a predominant feature of cancer initiation and progression. Transforming growth factor β (TGFβ) is a pleiotropic cytokine, which regulates numerous biological processes of various tissues in an autocrine and paracrine manner. Aberrant activity of TGFβ signaling is well known to play dual roles in cancer, depending on tumor stage and cellular context...
متن کاملCarboplatin-based Nanomedicine to Enhance the Anticancer Effect in SK-NEP-1 Wilms' Tumor Cells
Wilms tumor (WT) is the most common pediatric malignant primary renal tumor. Carboplatin (CRB), a platinum compound is widely used in the treatment of multiple cancers including ovarian, lung, head and neck, and wilm’s tumor. However lower uptake of CRB in cancer cells and toxicity concerns in healthy cells often limited its clinical outcome. The aim of this study was to investigate the antitum...
متن کاملCarboplatin-based Nanomedicine to Enhance the Anticancer Effect in SK-NEP-1 Wilms' Tumor Cells
Wilms tumor (WT) is the most common pediatric malignant primary renal tumor. Carboplatin (CRB), a platinum compound is widely used in the treatment of multiple cancers including ovarian, lung, head and neck, and wilm’s tumor. However lower uptake of CRB in cancer cells and toxicity concerns in healthy cells often limited its clinical outcome. The aim of this study was to investigate the antitum...
متن کاملMolecular targeting of liposomal nanoparticles to tumor microenvironment
Liposomes are biodegradable and can be used to deliver drugs at a much higher concentration in tumor tissues than in normal tissues. Both passive and active drug delivery by liposomal nanoparticles can significantly reduce the toxic side effects of anticancer drugs and enhance the therapeutic efficacy of the drugs delivered. Active liposomal targeting to tumors is achieved by recognizing specif...
متن کامل